

MAJU

Webinar Series 1 - 9 Magister Terapan PENS 2020

Practical Data Mining Case study : Intrusion Detection System

Iwan Syarif, MKom. MSc. PhD. 25 Agustus 2020

Southampton

This site 🔍 University 🔍

ECS Home

Search

Who we are

Achievements

ECS people

Facilities

History of ECS

- Life & work of Eric Zepler
- 1957 1963
- 1963 1973
- 1963 1974

Our approach

Our University

Promoting Women in Science and Engineering

University Home

Electronics and Computer Science (ECS)

Home >

Q

ŤĐ

4

Iwan Syarif

Publications

ECS, Faculty of Physical Sciences and Engineering University of Southampton Southampton, United Kingdom. SO17 1BJ

Position: Postgraduate, submitted in Web and Internet Science Email: is1e08@ecs.soton.ac.uk URI: http://id.ecs.soton.ac.uk/person/24177 [browse]

Interests: artificial intelligence, computer network, data mining, intrusion detection system, machine learning, network security

Qualifications

Master of Computer Science, University of Southampton, UK, 2009

Master of Informatics, ITS Surabaya, Indonesia, 2003

Bachelor of Computer Engineering, ITS Surabaya, Indonesia, 1994

Iwan Syarif

ECS staff options: Edit this page | See intranet page

Data Mining Approaches for Network Intrusion Detection System

https://norse-corp.com/map/

Firewalls

- Used to filter packets based on a combination of features
 - These are called packet filtering firewalls
 - Ex. Drop packets with destination port of 23 (Telnet)
- But why don't we just turn Telnet off?

Intrusion Detection System(IDS)

- combination of software and hardware that attempts to perform intrusion detection
- raise the alarm when possible intrusion or suspicious patterns are observed

What are Intrusions?

 Intrusions are actions that attempt to bypass security mechanisms of computer systems. They are usually caused by:

- Attackers accessing the system from Internet
- Insider attackers authorized users attempting to gain and misuse nonauthorized privileges
- Typical intrusion scenario

Network Diagram of Enterprise Network Server Farm NIDS NIDS Firewall Internet NIDS **DMZ-Partners**

Types of IDS

What Does an Intrusion Detection System Do?

Signature-based Detection

Anomaly-Based Detection

Data Mining for Intrusion Detection

• Signature-based / Misuse detection

- Building predictive models from labeled labeled data sets (instances
 - are labeled as "normal" or "intrusive") to identify known intrusions
- High accuracy in detecting many kinds of known attacks
- Cannot detect unknown and emerging attacks
- Anomaly detection
 - Detect novel attacks as deviations from "normal" behavior
 - Potential high false alarm rate previously unseen (yet legitimate) system behaviors may also be recognized as anomalies

Data Mining for Signature-based IDS

Models

Tid	SrcIP	Start time	Dest IP	Dest Port	Number of bytes	Attack
1	206.135.38.95	11:07:20	160.94.179.223	139	192	No
2	206.163.37.95	11:13:56	160.94.179.219	139	195	No
3	206.163.37.95	11:14:29	160.94.179.217	139	180	No
4	206.163.37.95	11:14:30	160.94.179.255	139	199	No
5	206.163.37.95	11:14:32	160.94.179.254	139	19	Yes
6	206.163.37.95	11:14:35	160.94.179.253	139	177	No
7	206.163.37.95	11:14:36	160.94.179.252	139	172	No
8	206.163.37.95	11:14:38	160.94.179.251	139	285	Yes
9	206.163.37.95	11:14:41	160.94.179.250	139	195	No
10	206.163.37.95	11:14:44	160.94.179.249	139	163	Yes

Summarization of attacks using association rules

Rules Discovered:

{Src IP = 206.163.37.95, Dest Port = 139, Bytes ∈ [150, 200]} --> {ATTACK}

Real Time Anomaly Detection

Hybrid IDS: signature-based + anomaly detection

- Anomaly detection was used at U of Minnesota and Army Research Lab to detect various intrusive/suspicious activities
- Many of these could not be detected using widely used intrusion detection tools like SNORT
- Anomalies/attacks picked by MINDS
 - Scanning activities
 - Non-standard behavior
 - Policy violations
 - Worms

https://www-users.cs.umn.edu/~lazaro27/MINDS/index.html

Step 1. Intrusion Data Collection

(raw data : real network traffics)

Simulation Network 99

https://www.ll.mit.edu/r-d/datasets

Step 2. Data Pre-Processing

DARPA-MIT dataset : real time network traffics

• DARPA 1998 data set

- Simulated nine weeks of raw TCP dump data
- Probing attacks, DoS attacks, U2R, R2L attacks

user@host:~\$ sudo tcpdump --interface=ens33 -n host 192.168.111.1 tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on ens33, link-type EN10MB (Ethernet), capture size 262144 bytes 23:55:40.546464 IP 192.168.111.1 > 192.168.111.209: ICMP echo request, id 64017, seq 0, length 64 23:55:40.546517 IP 192.168.111.209 > 192.168.111.1: ICMP echo reply, id 64017, seq 0, length 64 23:55:41.551452 IP 192.168.111.1 > 192.168.111.209: ICMP echo request, id 64017, seq 1, length 64 23:55:41.551485 IP 192.168.111.209 > 192.168.111.1: ICMP echo reply, id 64017, seq 1, length 64 23:55:42.556206 IP 192.168.111.1 > 192.168.111.209: ICMP echo request, id 64017, seg 2, length 64 23:55:42.556243 IP 192.168.111.209 > 192.168.111.1: ICMP echo reply, id 64017, seq 2, length 64 23:55:43.558055 IP 192.168.111.1 > 192.168.111.209: ICMP echo request, id 64017, seq 3, length 64 23:55:43.558094 IP 192.168.111.209 > 192.168.111.1: ICMP echo reply, id 64017, seg 3, length 64 23:55:43.955857 IP 192.168.111.1.53861 > 192.168.111.209.80: Flags [SEW], seq 3194582235, win 65535, options [mss 14 60, nop, wscale 6, nop, nop, TS val 243647685 ecr 0, sackOK, eol], length 0 23:55:43.955909 IP 192.168.111.209.80 > 192.168.111.1.53861: Flags [S.E], seg 4099266365, ack 3194582236, win 65160, options [mss 1460, sackOK, TS val 1285093713 ecr 243647685, nop, wscale 7], length 0 23:55:43.956230 IP 192.168.111.1.53861 > 192.168.111.209.80: Flags [.], ack 1, win 2058, options [nop,nop,TS val 243 647685 ecr 1285093713], length 0 23:55:43.956250 IP 192.168.111.1.53861 > 192.168.111.209.80: Flags [P.], seg 1:80, ack 1, win 2058, options [nop,nop ,TS val 243647685 ecr 1285093713], length 79: HTTP: GET / HTTP/1.1 23:55:43.956385 IP 192.168.111.209.80 > 192.168.111.1.53861: Flags [.], ack 80, win 509, options [nop,nop,TS val 128 5093713 ecr 243647685], length 0

Intrusion Datasets (ready to used)

- Darpa-Intrusion Dataset 1998
- KDD Cup Intrusion Data 1999
- NSL-KDD Intrusion Dataset
- Kyoto Intrusion Dataset 2006
- Intrusion Detection Evaluation Dataset (CICIDS2017)
 - Android Botnet 2015
 - Android Adware 2017
 - Botnet 2014
 - Denial of Service Attack 2017
 - Distributed Denial of Service Attack 2017 & 2019
 - IDS 2019
 - DNS over HTTPS attacks 2020
- https://www.unb.ca/cic/datasets/index.html

Step 3 : Data Transformation

Features 3&4

Feature 5

Feature 6

Feature 8

Feature 7

Three groups of features

• Basic features of individual TCP connections

- source & destination IP Features 1 & 2
- source & destination port
- Protocol
- Duration
- Bytes per packets
- number of bytes

•Time based features

	flag	service.	dst	
	S0	http	hl	
syn flood	S 0	http	h1	
5	S0	http	h1	
	S 0	http	h2	
normal	S 0	http	h4	
	S 0	ftp	h2	

	dst	service.	flag	%S0
2A	h1	http	S 0	70
22	h1	http	S 0	72
	h1	http	S0	75
	h2	http	S0	0
	h4	http	S0	0
	h2	ftp	S 0	0

existing features useless construct features with high information gain

- For the same source (destination) IP address, number of unique destination (source) IP addresses inside the network in last T seconds Features 9 (13)
- Number of connections from source (destination) IP to the same destination (source) port *in last T seconds Features 11 (15)*

Connection based features

- For the same source (destination) IP address, number of unique destination (source) IP addresses inside the network *in last N connections Features 10 (14)*
- Number of connections from source (destination) IP to the same destination (source) port *in last N connections Features 12 (16)*

Step 3 :Data Transformation KDD Cup 99 Data Set : 41 attributes + label

S.NO	FEATURE NAME	S.NO	FEATUR	E NAME	
1	Duration	22	Is_guest_login		
2	Protocol type	23	Count		
3	Service	24	Serror_rate		
4	Src_byte	25	Rerror_rate	Category	Class label(attack) in dataset
5	Dst_byte	26	Same_srv_rate	8 7	
6	Flag	27	Diff_srv_rate	DOS-Denial of	back,land, pod, neptune, smurf,
7	Land	28	Srv_count	service	teardrop
8	Wrong_fragment	29	Srv_serror_rate		
9	Urgent	30	Srv_rerror_rate	R2L-Remote to lo	ftp_write, guess_passwd, imap,
10	Hot	31	Srv_diff_host_i		multihop, phf, spy, warezclient
11	Num_failed_logins	32	Dst_host_coun-		
12	Logged_in	33	Dst_host_srv_c	U2D User to red	Buffer_overflow, loadmodule, perl,
13	Num_compromised	34	Dst_host_same	02K-08e1 10100	rootkit
14	Root_shell	35	Dst_host_diff_{		
15	Su_attempted	36	Dst_host_same	Prohe	Insween nman nortsween satan
16	Num_root	37	Dst_host_srv_d	itt_host_rate	
17	Num_file_creations	38	Dst_host_serror	r_rate	
18	Num_shells	39	Dst_host_srv_s	error_rate	
19	Num_access_shells	40	Dst_host_rerror	r_rate	
20	Num_outbound_cmds	41	Dst_host_srv_re	error_rate	
21	Is_hot_login				

Data Mining Techniques

Supervised Learning vs Unsupervised Learning

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Supervised Learning

www.educba.com

Data Mining for Signature-based IDS

Models

Tid	SrcIP	Start time	Dest IP	Dest Port	Number of bytes	Attack
1	206.135.38.95	11:07:20	160.94.179.223	139	192	No
2	206.163.37.95	11:13:56	160.94.179.219	139	195	No
3	206.163.37.95	11:14:29	160.94.179.217	139	180	No
4	206.163.37.95	11:14:30	160.94.179.255	139	199	No
5	206.163.37.95	11:14:32	160.94.179.254	139	19	Yes
6	206.163.37.95	11:14:35	160.94.179.253	139	177	No
7	206.163.37.95	11:14:36	160.94.179.252	139	172	No
8	206.163.37.95	11:14:38	160.94.179.251	139	285	Yes
9	206.163.37.95	11:14:41	160.94.179.250	139	195	No
10	206.163.37.95	11:14:44	160.94.179.249	139	163	Yes

Summarization of attacks using association rules

Rules Discovered:

{Src IP = 206.163.37.95, Dest Port = 139, Bytes ∈ [150, 200]} --> {ATTACK}

Unsupervised Learning

Unsupervised Learning

Real Time Anomaly Detection

What are Anomalies?

- Anomaly is a pattern in the data that does not conform to the expected behavior
- Also referred to as outliers, exceptions, peculiarities, surprise, etc.
- Anomalies translate to significant (often critical) real life entities
 - Cyber intrusions
 - Credit card fraud

Simple Example

- N₁ and N₂ are regions of normal behavior
- Points o₁ and o₂ are anomalies
- Points in region O₃ are anomalies

The intrusions will appear as outliers in the data.

malicious

attacks

Using Clustering for Intrusion Detection

- Once data is clustered, all of the instances that appear in small clusters are labeled as anomalies because;
- The normal instances should form large clusters compared to the intrusions,
- Malicious intrusions and normal instances are qualitatively different, so they do not fall into the same cluster.

