Webinar series # 5 Wireless Network and IoT

8/28/2020

Curriculum Vitae

• Nama

- : I Gede Puja Astawa
- Pendidikan
 - S1 Teknik Elektro Sistem Pengaturan ITS (1993)
 - S2 Teknik Elektro Teknik Multimedia Telekomunikasi ITS (2004)
 - S3 Information Science NAIST Jepang (2012)
- Bidang Ilmu : Telekomunikasi
- Pekerjaan : Dosen PENS di
 - Prodi Teknik Telekomunikasi
 - Program Pascasarjana PENS
- Jabatan
 - Kepala Departemen T Elektro
- Ketua Group Riset Wireless Communication

Outline

- Wireless communication
- Our research in wireless communication system
- Research Grant

Provide electronic exchange multimedia data, voice, data, video music, email; web page, etc

http://www.embsyslabs.com/communication-projects-in-embedded-domain.php 8/28/2020

Block Diagram of Conventional MIMO OFDM System 5

ESPAR antenna contribute simplified number of RF chain

DNumber of parasitic element 3 and 5

Performance is still worse than conventional MIMO system 8/28/2020 ◆ [2] → Single RF maximal ratio combining diversity for OFDM system using an ESPAR antenna whose direction is oscillated in the symbol time by Tsukamoto

□ESPAR antenna contribute give diversity gain

□Number of parasitic element 1

□System is SISO not MIMO

Problem

- [1] <u>A Novel Approach to MIMO Transmission using Single RF</u>
 Front End by Antonis Kalis, A G Kanatas, C Papadias
 - Performance is still below than the conventional MIMO system
- ◆ [2] → Single RF maximal ratio combining diversity for OFDM system using an ESPAR antenna whose direction is oscillated in the symbol time by Tsukamoto
 - The system is still SISO (Single Input Single Output)

Objectives

- Propose an RF signal processing based diversity scheme for MIMO-OFDM systems antenna in order to improve the bit error rate performance
- Shows and consider complexity of computational cost of MIMO decomposition

A.Channel Estimation

pilot symbol (**p**) \longrightarrow_{T} Frequency domain $p = [p_o, p_1, \dots, p_{N-1}]^T$ $u = \mathbf{Fr} = [H_0] \mathbf{GH}_1 [p+z]$

 $u = \mathbf{Ph}_0 \Box \mathbf{GPh}_1 + z$

By Eq. of Covariance and Cross-Corelation $R=E[\mathbf{uu}^{H}]=I\mathbf{PR}_{h}P^{H}\Box\mathbf{GPR}_{h}P^{H}G^{H}+\sigma_{z}^{2}I$ $B_{i}=E[\mathbf{uh}_{i}^{H}] \implies B_{o}=I\mathbf{PR}_{h} \text{ and } B_{1}=\mathbf{GPR}_{h}$ where $R_{h}=E[h_{i}h_{i}^{H}]$

CIR for radiatic and parasitic element

$$h_i = W_i^H u$$
$$W_i = R^{-1} B_i$$

In the following using ZF equalizer by equation 8/28/2020

B.Frequency Domain Equalizer

is the estimated channel response

RF Signal Processing Based Diversity Scheme for MIMO-OFDM Systems

A.Channel Estimation

Received signal

$$u_{i} = \mathbf{P}_{1}h_{i,1}^{ns} + \mathbf{GP}_{1}h_{i,1}^{s} + P_{2}h_{i,2}^{ns} + \mathbf{GP}_{2}h_{i,2}^{s} + z$$

Auto-correlation

$$R = E[u\boldsymbol{u}^{H}]$$

= $\boldsymbol{P}_{1}R_{h}P_{1}^{H} + G\boldsymbol{P}_{1}R_{h}P_{1}^{H}G^{H} +$
 $P_{2}R_{h}P_{2}^{H} + G\boldsymbol{P}_{2}R_{h}P_{2}^{H}G^{H} + \sigma_{z}^{2}I$

Cross-correlation

$$B_{i} = E[\mathbf{uh}_{i}^{H}]$$
$$B_{i}^{ns} = P_{i}R_{h}$$
$$B_{i}^{s} = \mathbf{GP}_{i}R_{h}$$

Rectangular shaping multi-path

$$R_h(k) = e^{-j\pi\Delta_f \tau_{rms}} \frac{\sin(\pi\Delta_f \tau_{rms}k)}{\pi\Delta_f \tau_{rms}k}$$

Exponentially decaying multi-path

$$R_h(k) = \frac{1}{1 + j2\pi\Delta_f \tau_{rms}k}$$

Channel impulse response estimated

$$h_{i,l}^{ns} = (W_i^{ns})^H u_i$$
$$W_i^{ns} = \mathbf{R}^{-1} B_i^{ns}$$
$$W_i^s = \mathbf{R}^{-1} B_i^s$$
$$W_i^s = \mathbf{R}^{-1} B_i^s$$

MIMO Detector/ Equalizer

a. ZERO FORCING $\hat{x}_{ZF} = H^+ r$

b. MMSE $\hat{x}_{MMSE} = (\alpha I_{Nt} + H^H H)^{-1} Hr$

c. V-BLAST

B. Frequency Domain Equalizer

In this work, the mimo equalizer use a V-BLAST (Vertical Bell Layer Space Time) based algorithm.

Receiver of V-BLAST Architecture

V-BLAST Receiver extracts data streams by ZF or MMSE filter with successive interference cancellation.

Steps for V-BLAST detection

- 1. Ordering : choose the best channel.
- 2. Nulling : using ZF or MMSE
- 3. Slicing : making a symbol decision
- 4. Canceling : subtracting the detected symbol

MIMO decoder using 1 V-BLAST Processors

 $H_{1-\frac{N}{2}}$

 $H_{2,-\frac{N}{2}}$

 $H_{1,-(\frac{N}{2}-1)}$

 $H_{2,-(\frac{N}{2}-1)}$

0

0

 $H_{1,-(\frac{N}{2}-2)}$

 $H_{2,-(\frac{N}{2}-2)}$

0

0

0

 $H_{1,-1}$

 $H_{2,-1}$

0

. . .

0

0 ...

0

8/28/2020

0

. . .

Channel Matrix Size for 1 V-BLAST Processors

8/28/2020

MIMO decoder using 2 V-BLAST Processors

$$\mathbf{H}_{up} = \begin{pmatrix} H_{1,-N/2} & 0 & \dots & 0 & H_{1,-N/2} & 0 & \dots & 0 \\ H_{2,-N/2} & \ddots & \ddots & \vdots & H_{2,-N/2} & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 & 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & H_{1,-1} & \vdots & \ddots & \ddots & H_{1,-1} \\ 0 & \dots & 0 & H_{2,-1} & 0 & \dots & 0 & H_{2,-1} \\ H_{1,-N/2} & 0 & \dots & 0 & H_{1,-N/2} & 0 & \dots & 0 \\ H_{2,-N/2} & \ddots & \ddots & \vdots & H_{2,-N/2} & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 & 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & H_{1,-1} & \vdots & \ddots & \ddots & H_{1,-1} \\ 0 & \dots & 0 & H_{2,-1} & 0 & \dots & 0 & H_{2,-1} \end{pmatrix} \\ Upper channel matrix$$

$$\mathbf{H}_{lo} = \begin{pmatrix} H_{1,+N/2} & 0 & \dots & 0 & H_{1,+N/2} & 0 & \dots & 0 \\ H_{2,+N/2} & \ddots & \ddots & \vdots & H_{2,+N/2} & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 & 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & H_{1,+1} & \vdots & \ddots & \ddots & H_{1,+1} \\ 0 & \dots & 0 & H_{2,+1} & 0 & \dots & 0 & H_{2,+1} \\ H_{1,+N/2} & 0 & \dots & 0 & H_{1,+N/2} & 0 & \dots & 0 \\ H_{2,+N/2} & \ddots & \ddots & \vdots & H_{2,+N/2} & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 & 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & H_{1,+1} & \vdots & \ddots & \ddots & H_{1,+1} \\ 0 & \dots & 0 & H_{2,+1} & 0 & \dots & 0 & H_{2,+1} \end{pmatrix}$$

Lower channel matrix

8/28/2020

Channel Matrix Size for 2 V-BLAST Processors

MIMO decoder using 4 V-BLAST Processors

	$(H_{1,-N/2})$	0		0	$H_{1,-N/2}$	0		0)	
	$H_{2,-N/2}$	·.	·	÷	$H_{2,-N/2}$	·	·	:	
	0	·	·	0	0	·	·	0	
	:	·	·	$H_{1 - N/4}$:	٠.	. н	1 - N/4	
H	0		0	$H_{2,-N/4}$	0		0 H	2,-N/4	
II UA -	$H_{1,-N/2}$	0	• • •	0	$H_{1,-N/2}$	0	•••	0	
	$H_{2,-N/2}$	·.	·.	÷	$H_{2,-N/2}$	·.	·.	:	
	0	·.	·	0	0	·	·	0	
	1	÷.,	·	$H_{1,-N/4}$	÷	·	н	1,-N/4	
	0		0	$H_{2,-N/4}$	0		0 H	$_{2,-N/4}$)	
	$(H_{1,-N/4})$	0		0	$H_{1,-N/4}$	0		0	
	$H_{2,-N/4}$	·.	·.	÷	$H_{2,-N/4}$	·.	·.	÷	
	0	۰.	۰.	0	0	۰.	·	0	
	1	·.	÷.,	$H_{1,-1}$:	·	·	$H_{1,-1}$	
$H_{uB} =$	0		0	$H_{2,-1}$	0		0	$H_{2,-1}$	
	11 _{1,-N/4}	·.	•.	:	и _{1,-N/4}	· .	•.	:	
	<i>H</i> _{2,-N/4}	. '	. '		n _{2,-N/4}		. '		
		·.		0	0	·.	·.	0	
		•.	·. 0	$H_{1,-1}$ $H_{2,-1}$:	•	·. 0	$H_{1,-1}$	
	0		0	112,-1	0		0	112,-1	
	$\binom{H_{1,+N/2}}{}$	0	•••	0	$H_{1,+N/2}$	0		0)	
	$H_{2,+N/2}$	۰.	·	:	$H_{2,+N/2}$		·	:	
	0	··.	·•.	0	0	·•.	·	0	
		·•.	·•.	$H_{1,+N/4}$	÷	۰.	·	$H_{1,N/4}$	
$H_{lA} =$			0	$H_{2,+N/4}$	0 <i>H</i> 1 . ND	0	0	H _{2,N/4}	
	11,+N/2				11,+ <i>N</i> /2				
	$H_{2,+N/2}$	•.	•.	:	$H_{2,+N/2}$	•.	•.	:	
	0	·	·	0	0	· · .	·	0	
		·	·	$H_{1,+N/4}$:	·•.	· · · · ·	$I_{1,+N/4}$	
	(0		0	$H_{2,+N/4}$	0	•••	0 F	$I_{2,+N/4}$	
	$(H_{1,+N/4})$	0		0	$H_{1,+N/4}$	ф ()		0)
	$H_{2,+N/4}$	·.	·.	:	$H_{2,+N/2}$	۰. ۱	. [.] .	÷	
	0	·.	·.	0	0	۰.	. [.] .	0	
	1	۰.	۰.	H_{1+1}	:	۰.	· ··.	$H_{1 \rightarrow 1}$	
Hun -	0		0	$H_{2,+1}$	0		. 0	$H_{2,+1}$	
$\mathbf{H}_{lB} =$	$H_{1,+N/4}$	0		0	$H_{1,+N/2}$	¢ 0		0	
	$H_{2,+N/4}$	·.	·.	:	$H_{2,+N/2}$	۰. ۱	· ··.	÷	
	0	·.	·.	0	0	۰.	· ··.	0	
		۰.	۰.	$H_{1,\pm 1}$	÷	۰.	· ··.	$H_{1 \rightarrow 1}$	
	l o		0	$H_{2,+1}$	0		. 0	$H_{2,+1}$)

Upper channel matrix

Lower channel matrix

Channel Matrix Size for 4 V-BLAST Processors

8/28/2020

Number of V-BLAST processor, n

Table Of Simulation Parameters

	Parameters	Value
Transmitter	Pilot sequence Modulation Number of Sub carrier IFFT/FFT size Antenna Dimension Guard Interval ratio	HTLTF IEEE802.11n QPSK 56 64 2 x 2 1/4
Channel Model	Rayleigh Fading	2 – rays
Receiver	Channel estimation Equalization	MMSE MMSE and Kalman

MIMO decomposition Computational Cost

	4 - QAM Mo	odDemod	64 - QAM ModDemod		
Detection Type	Multiplication	Addition	Multiplication	Addition	
ZF (2x2)	43.1x10 ²	35.3x10 ²	43.1x10 ²	35.3x10 ²	
MMSE (2x2)	45.4x10 ²	37.5x10 ²	45.4x10 ²	37.5x10 ²	
MLD (2x2)	23.8x10 ³	20x10 ³	57.3x10 ⁵	48.2x10 ⁵	
V-BLAST (2x2)	11x10 ³	79x10 ²	28.4x10 ³	15x10 ³	
ZF (2x4)	79x10 ²	68.9x10 ²	79x10 ²	68.9x10 ²	
MMSE (2x4)	81.2x10 ²	70.6x10 ²	81.2x10 ²	70.6x10 ²	
V-BLAST (2x4)	21.1x10 ³	16.3x10 ³	38.6x10 ³	23.5x10 ³	
ZF (2x2)	11.8x10 ⁶	11.7x10 ⁶	11.8x10 ⁶	11.7x10 ⁶	
MMSE(2x2)	11.8x10 ⁶	11.7x10 ⁶	11.8x10 ⁶	11.7x10 ⁶	
V-BLAST(2x2)	59.7x10 ⁵	59.1x10 ⁵	59.7x10 ⁵	59.1x10 ⁵	

This work has shown that a MIMO-OFDM receiver using RF signal processing can achieve comparable spectral efficiency gains.

Computer simulation results verify the performance of the proposed scheme. The proposed scheme gives a diversity gain in a frequency selective-fading channel.

Although diversity gains have been obtained, the complexity of computation is still a constraint in this approach requiring reduction of the channel matrix size to one half of the original matrix.

>Further research is needed to appropriately and correctly simplify the channel matrix size to decrease the complexity time consumption of the computation.

Complexity of computational cost our proposal for 2x2 dimension for 4-QAM is about 250 times and for 64-QAM is comparable to conventional MIMO - OFDM system using MLD.

Research Area

Roadmap

2017 2018 2019 2020	2021 2022 2023	2024 2025	→ 2030	
Lab. scale prototyping	Real-environment testing	Commercialized product	Future Development	
Secure environmental monitoring system				
Secure parking-lot and agriculture monitoring system	SMART CITI			
Secure e-Healthcare system with privacy protection				
Security in the battle field, fire fighter, object tracking system	Integrated syst	Next generation intelligent networks with enhancing privacy protection		
Security in the delay tolerant networks Anonymous V2V communication and tracking				
Anonymous authentication systems (algo				
Robust and secure wireless communication with channel estimation, detection, coding, so layer as well				
SMART antenna for wireless communication systems				
Road mapPenelitian				

8/28/2020

Penelitian Nasional yang didanai

- Perencanaan Dan Implementasi Sistem Komunikasi Nirkabel Multi-Carrier Orthogonal Frequency Division Multiplexing (OFDM) Untuk Multi Antena Berbasis Universal Software Radio Peripheral (USRP) 2013 – 2015 (Penelitian PTUP)
- 2. Rancang Bangun Sistem Penerima Digital Video Broadcasting Second Generation Terrestrial (DVB-T2) Menggunakan Transmisi Sistem MIMO berbasis Single RF Antenna (PTUP)

Eksperimental – Set up

Tabel Parameter

	Parameter	Nilai		
Pengirim	Pilot Sequence	32 symbol		
	Modulasi	4QAM		
	Jumlah subcarrier	128		
	Ukuran FFT	128		
	Guard Intervals	32 bits (16 zeroes at the edges		
		and at 1 zero at DC)		
	Data Rate	200 KBps		
	Frekuensi Carrier	910 MHz		
	1 Frame Data	320 bit		
	Rasio Cyclic Prefix	1/4		
	Data of symbol OFDM	192 bit		
Penerima	Equalizer	Zero Forcing		

Eksperimental Results: Constellation

8/28/2020

Terimakasih