Webinar series # 5 Wireless Network and IoT

8/28/2020

Curriculum Vitae

-
- Nama : I Gede Puja Astawa
- Pendidikan :
	- S1 Teknik Elektro Sistem Pengaturan ITS (1993)
	- S2 Teknik Elektro Teknik Multimedia Telekomunikasi ITS (2004)
	- S3 Information Science NAIST Jepang (2012)
- Bidang Ilmu : Telekomunikasi
- Pekerjaan : Dosen PENS di
	- Prodi Teknik Telekomunikasi
	- Program Pascasarjana PENS
- Jabatan
	- Kepala Departemen T Elektro
- **Ketua Group Riset Wireless Communication**

Outline

- Wireless communication
- Our research in wireless communication system
- Research Grant

Provide electronic exchange multimedia data, voice, data, video music, email;web page, etc

8/28/2020 *http://www.embsyslabs.com/communication-projects-in-embedded-domain.php*

Block Diagram of Conventional MIMO OFDM System 5

ESPAR antenna contribute simplified number of RF chain

■Number of parasitic element 3 and 5

8/28/2020 6 Performance is still worse than conventional MIMO system

◆ **[2]** → **Single RF maximal ratio combining diversity for OFDM system using an ESPAR antenna whose direction is oscillated in the symbol time** by *Tsukamoto*

ESPAR antenna contribute give diversity gain

ENumber of parasitic element 1

OSystem is SISO not MIMO

Problem

- ◆ **[1] A Novel Approach to MIMO Transmission using Single RF Front End** by Antonis *Kalis,A G Kanatas, C Papadias* :
	- Performance is still below than the conventional MIMO system
- ◆ **[2]** → **Single RF maximal ratio combining diversity for OFDM system using an ESPAR antenna whose direction is oscillated in the symbol time** by *Tsukamoto*
	- The system is still SISO (Single Input Single Output)

Objectives

- ◆ Propose an RF signal processing based diversity scheme for MIMO-OFDM systems antenna in order to improve the bit error rate performance
- ◆ Shows and consider complexity of computational cost of MIMO decomposition

A.Channel Estimation

 $p=[p_o, p_1, \dots p_{N-1}]^T$
 $u = \mathbf{Fr} = [H_0 \square \mathbf{GH}_1]$ *,p¹ ,*... *pN*[−] ¹] pilot symbol (**p**) —→ Frequency domain *u=***Fr**⁼ *^H*⁰ **GH¹** *p+z*

 u = P **h**₀ \Box GP**h**₁

By Eq. of Covariance and Cross-Corelation $R = E$ [**uu**^{*H*}_{*n*}]=*I* **PR**_{*h*} *P H* **GPR***^h P* H G^H $+ \sigma_z^z$ *2 I* B_i $=$ \dot{E} [\textbf{uh}^{H}_{i}] where $\tilde{R_h}$ = $E[\, \tilde{h_i} \tilde{h_i^H}\,]$] B _{*o}* =*I* \mathbf{PR}_{h} $\mathbf{}_{H}$ and $\mathbf{}_{B}$ $\mathbf{}_{1}$ </sub> =and $\left.B\right| = \mathbf{GPR}_h$

CIR for radiatic and parasitic element

$$
h_i = W_i^H u
$$

$$
W_i = R^{-1} B_i
$$

In the following using ZF equalizer by equation

B.Frequency Domain Equalizer

a serior.
B/28/2020

RF Signal Processing Based Diversity Scheme for MIMO-OFDM Systems

A.Channel Estimation

Received signal

$$
u_i = P_1 h_{i,1}^{ns} + GP_1 h_{i,1}^s + P_2 h_{i,2}^{ns} + GP_2 h_{i,2}^s + z
$$

Auto-correlation

$$
R = E[uuH]
$$

= $P_1R_hP_1^H + GP_1R_hP_1^HG^H + P_2R_hP_2^HG^H + \sigma_z^2I$

Cross-correlation

$$
B_i = E[\mathbf{uh}_i^H]
$$

\n
$$
B_i^{ns} = P_i R_h
$$

\n
$$
B_i^s = \mathbf{G} \mathbf{P}_i R_h
$$

\n
$$
B_i^{228/2020}
$$

Rectangular shaping multi-path

$$
R_h(k) = e^{-j\pi\Delta_f \tau_{rms}} \frac{\sin(\pi\Delta_f \tau_{rms}k)}{\pi\Delta_f \tau_{rms}k}
$$

Exponentially decaying multi-path 1

$$
R_h(k) = \frac{1}{1 + j2\pi\Delta_f \tau_{rms}k}
$$

Channel impulse response estimated

$$
h_{i,l}^{ns} = (W_i^{ns})^H u_i
$$

\n
$$
h_{i,l}^s = (W_i^s)^H u_i
$$

\n
$$
W_i^s = R^{-1} B_i^s
$$

\n
$$
W_i^s = R^{-1} B_i^s
$$

MIMO Detector/ Equalizer

a. ZERO FORCING $\hat{x}_{ZF} = H^+r$

 $\hat{x}_{MMSE} = (\alpha I_{Nt} + H^H H)^{-1} Hr$ **b. MMSE**

c. V-BLAST

B. Frequency Domain Equalizer

In this work, the mimo equalizer use a V-BLAST (Vertical Bell Layer Space Time) based algorithm.

Receiver of V-BLAST Architecture

V-BLAST Receiver extracts data streams by ZF or MMSE filter with successive interference cancellation.

Steps for V-BLAST detection

- 1. Ordering : choose the best channel.
- 2. Nulling : using ZF or MMSE
- 3. Slicing : making a symbol decision
- 4. Canceling : subtracting the detected symbol

MIMO decoder using 1 V-BLAST Processors

 $H_{1,-\frac{N}{2}}$

 H_{2} \overline{N}

 \cdot .

 \cdots

 $H_{1,-(\frac{N}{2}-1)}$

 $H_{2,-(\frac{N}{2}-1)}$

 $\boldsymbol{0}$

 $\overline{0}$

 $H_{1,-(\frac{N}{2}-2)}$

 $H_{2,-(\frac{N}{2}-2)}$

 $\overline{0}$

 \ldots

 $\overline{0}$

 $\boldsymbol{0}$

 \cdots

 \ldots

 \ldots

 $\boldsymbol{0}$

 $H_{1,-1}$

 H_{2-1}

 Ω

 \cdots

 \cdots \cdots

 $\mathbf{0}$

 $\overline{0}$ \cdots

 θ

.

 \cdots

 \cdots

 \cdots

 \cdots

 \cdots

 \cdots

 \cdots

 $\ddot{}$

8/28/2020 19

Channel Matrix Size for 1 V-BLAST Processors

8/28/2020

MIMO decoder using 2 V-BLAST Processors

$$
\mathbf{H}_{up} = \begin{pmatrix}\nH_{1,-N/2} & 0 & \dots & 0 & H_{1,-N/2} & 0 & \dots & 0 \\
H_{2,-N/2} & \ddots & \ddots & \vdots & H_{2,-N/2} & \ddots & \ddots & \vdots \\
0 & \ddots & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & H_{1,-1} & \vdots & \ddots & \ddots & H_{1,-1} \\
0 & \dots & 0 & H_{2,-1} & 0 & \dots & 0 & H_{2,-1} \\
H_{1,-N/2} & 0 & \dots & 0 & H_{1,-N/2} & 0 & \dots & 0 \\
H_{2,-N/2} & \ddots & \ddots & \vdots & H_{2,-N/2} & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & H_{1,-1} & \vdots & \ddots & \ddots & H_{1,-1} \\
0 & \dots & 0 & H_{2,-1} & 0 & \dots & 0 & H_{2,-1}\n\end{pmatrix}
$$
\n
$$
Upper channel matrix
$$

$$
\mathbf{H}_{lo} = \begin{pmatrix}\nH_{1, +N/2} & 0 & \dots & 0 & H_{1, +N/2} & 0 & \dots & 0 \\
H_{2, +N/2} & \ddots & \ddots & \vdots & H_{2, +N/2} & \ddots & \ddots & \vdots \\
0 & \ddots & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & H_{1, +1} & \vdots & \ddots & \ddots & H_{1, +1} \\
0 & \dots & 0 & H_{2, +1} & 0 & \dots & 0 & H_{2, +1} \\
H_{1, +N/2} & 0 & \dots & 0 & H_{1, +N/2} & 0 & \dots & 0 \\
H_{2, +N/2} & \ddots & \ddots & \vdots & H_{2, +N/2} & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & H_{1, +1} & \vdots & \ddots & \ddots & H_{1, +1} \\
0 & \dots & 0 & H_{2, +1} & 0 & \dots & 0 & H_{2, +1}\n\end{pmatrix}
$$

8/28/2020 21 *Lower channel matrix*

Channel Matrix Size for 2 V-BLAST Processors

MIMO decoder using 4 V-BLAST Processors

Upper channel matrix

Lower channel matrix *Lower channel matrix*

Channel Matrix Size for 4 V-BLAST Processors

8/28/2020

Table Of Simulation Parameters

MIMO decomposition Computational Cost

➢This work has shown that a MIMO-OFDM receiver using RF signal processing can achieve comparable spectral efficiency gains.

➢Computer simulation results verify the performance of the proposed scheme. The proposed scheme gives a diversity gain in a frequency selective-fading channel.

➢Although diversity gains have been obtained, the complexity of computation is still a constraint in this approach requiring reduction of the channel matrix size to one half of the original matrix.

➢Further research is needed to appropriately and correctly simplify the channel matrix size to decrease the complexity time consumption of the computation.

8/28/2020 28 system using MLD.➢Complexity of computational cost our proposal for 2x2 dimension for 4-QAM is about 250 times and for 64-QAM is comparable to conventional MIMO - OFDM

Research Area

8/28/2020

Roadmap

8/28/2020

Penelitian Nasional yang didanai

- 1. Perencanaan Dan Implementasi Sistem Komunikasi Nirkabel Multi-Carrier Orthogonal Frequency Division Multiplexing (OFDM) Untuk Multi Antena Berbasis Universal Software Radio Peripheral (USRP) 2013 – 2015 (Penelitian PTUP)
- 2. Rancang Bangun Sistem Penerima Digital Video Broadcasting Second Generation Terrestrial (DVB-T2) Menggunakan Transmisi Sistem MIMO berbasis Single RF Antenna (PTUP)

Eksperimental – Set up

Tabel Parameter

Eksperimental Results: Constellation

8/28/2020

Terimakasih