

NON-LINEAR CONTROL & its APPLICATIONS

Bambang Sumantri, Dr. Eng. Lab. Kendali Cerdas & Robotika D-105

Industrial Revolution

Source: Prof Erik Brynjolfsson & Andrew McAfee (MIT)

Why is Non-Linear Control ?

MACHINERY SYSTEM

POWER GENERATION SYSTEM

ROBOTICS SYSTEM

Mostly, all existing system is non-linear

What is Nonlinear System ?

A system is nonlinear if the principle of superposition does not apply

$$egin{array}{l} F(x_1+x_2)=F(x_1)+F(x_2)\ F(ax)=aF(x) \end{array}$$

for scalar a.

2

Additivity

Homogeneity

AN EXAMPLE OF NONLINEAR SYSTEM BEHAVIOR

A simplified model of the motion of an underwater vehicle can be written: $\dot{v}_s = -v_s |v_s| + u$

OTHER EXAMPLES OF NON-LINEAR PHENOMENA

LINEAR vs NON-LINEAR CONTROL

LINEAR CONTROL

- Only valid for small range operation
- Cannot handle system with "hard non-linearity"
- Cannot deal with uncertainties, e.g., parameter changing due to ambient temperature, pressure, etc..

- NON-LINEAR CONTROL
 - Valid for wide range operation
 - Can handle system with "hard non-linearity"
 - Can deal with uncertainties, e.g., ambient temperature, pressure, etc..

Type of Control System

- ► Based on Systems Type:
 - ► Linear Controller (PID, LQR, etc.)
 - Non-Linear Controller (SMC, Feedback Linearization, etc.)
- Based on Design Process:
 - Model based Controller
 - Need essential information/parameter of the controlled system
 - Simple in realization/computation
 - Ex: SMC, Backstepping, etc
 - Non-model Based Controller
 - No essential information/parameter of the controlled system are needed
 - Complex computation
 - ► Ex: Fuzzy, NN, etc.

Objective of Control Design

- Main Objective in Control System Design:
 - ► Stability
 - ► Performance:
 - Steady State error
 - Transient response (% Overshoot, speed response)
 - Minimize energy consumption
 - ► comfortability

DESIRED PERFORMANCES OF CONTROL DESIGN

- Robust to disturbance and parameter changing
- Fast response, smooth, and comfort
- Less energy consumption.

OTHER ISSUE IN CONTROL SYSTEM DESIGN AND IMPLEMENTATION

Why is Non-Linear Control ?

Model based Non-Linear Controller

Simple in realization/computation

Need essential information/parameter of the controlled system

Solution for low cost computational resource

Provides robustness

Model Based Non-Linear Control Design

Controller Design: SMC

→ To guarantee existence of Sliding Mode $s = \dot{s} = 0$ $\dot{\eta}_1 = \eta_2$ $\dot{\eta}_2 = v + \gamma_d$ $s = (F + \Psi)e + \dot{e}$ $e = \eta_1 - \eta_{1d}$ $\dot{s} = (F + \Psi)\dot{e} + \dot{\Psi}e + v + \gamma_d - \dot{\eta}_{2d}$ $v = v_{eq} - C_a \left(|s|^{\frac{1}{2}} \operatorname{sign}(s) + Gs \right) - \int_0^t C_b \left(\frac{1}{2} \operatorname{sign}(s) + \frac{3G}{2} |s|^{\frac{1}{2}} \operatorname{sign}(s) + G^2s \right) dt,$ $v_{eq} = -(F + \Psi)\dot{e} - \dot{\Psi}e + \dot{\eta}_{2d},$ 17 Simple for implementation

EXAMPLE OF INDIRECT CONTROL DESIGN: INDUCTION MOTOR

DC

$$U_{FOSMC}(U_{sd}) = \sigma L_s \left(i_{sd_{desire}} + \frac{R_{sm}}{\sigma L_s} i_{sd} - \omega_s i_{sq} - \frac{L_m}{L_r T_r} \psi_r \right) + k \left[S \right] + \beta sign \left[S \right]$$
$$U_{FOSMC}(U_{sq}) = \sigma L_s \left(i_{sq_{desire}} + \frac{R_{sm}}{\sigma L_s} i_{sq} - \omega_s i_{sd} - \frac{L_m \omega_{sl}}{L_r} \psi_r \right) + k \left[S \right] + \beta sign \left[S \right]$$
$$s = \left(\frac{d}{dt} + \lambda \right)^{n-1} e$$

Research Topics

RESEARCH FRAMEWORK ON UNMANNED AERIAL VEHICLE

Achievements

- 1. Journal paper
- 2. International conference

RESEARCH ON AUTOMATIC GUIDED VEHICLE (AGV)

- MOTION CONTROL
- MAPPING AND LOCALIZATION
- AUTOMATIC DOCKING AND CHARGING

RESEARCH ON POWER ASSISTED e-BICYCLE

Everything is nothing without POWER, but POWER is nothing without CONTROL.