PROGRAM PASCASARJANA

PROGRAM STUDI
TEKNIK ELEKTRO

PROGRAM STUDI
TEKNIK INFORMATIKA DAN KOMPUTER





15 Desember 2023
Revisi Pengumuman Seminar Tesis Akhir Semester Gasal 2023/2024.

8 Agustus 2023
Pengumuman Penerimaan Mahasiswa Baru Magister Terapan PENS Gel.2 Tahun Ajaran 2023/2024.

19 Juni 2023
Pengumuman Jadwal Seminar Tesis Semester Genap Tahun Ajaran 2022/2023.

31 Mei 2023
Pengumuman Penerimaan Mahasiswa Baru Magister Terapan (S2) PENS Gelombang 1 Tahun Ajaran 2023/2024.

9 Januari 2023
Informasi Prasyarat Yudisium untuk Wisada Tahun Ajaran Gasal 2022-2023.

17 Desember 2022
Pengumuman Jadwal Seminar Tesis Semester Gasal Tahun Ajaran 2022/2023.

13 Agustus 2022
Jadwal Perkuliahan Semeseter Gasal 2022/2023.

8 Agustus 2022
Pengumuman Penerimaan Mahasiswa Baru Magister Terapan PENS Gel.2 Tahun Ajaran 2022/2023.

22 Juli 2022
Pengumuman daftar ulang Bagi Mahasiswa Lama dan pembayaran SPP Program Magister Terapan Tahun Ajaran Gasal 2022-2023.

22 Juli 2022
Informasi Prasyarat Yudisium untuk Wisada Tahun Ajaran Genap 2021-2022.

5 Juli 2022
Pengumuman Penerimaan mahasiswa baru Jalur Masuk Beasiswa PENS Program Magister Terapan PENS Tahun Akademik 2022/2023.

3 Juli 2022
Pengumuman Penerimaan mahasiswa baru Jalur Masuk Beasiswa PENS Program Magister Terapan PENS Tahun Akademik 2022/2023

30 Juni 2022
Pengumuman Penerimaan Mahasiswa Baru Magister Terapan PENS Gel.1 Tahun Ajaran 2022/2023

25 Mei 2022
Kegiatan Pengabdian Kepada Masyarakat Program Studi S2 Teknik Informatika & Komputer



SILABUS MATA KULIAH

KNOWLEDGE DISCOVERY
S2 TEKNIK INFORMATIKA DAN KOMPUTER


Deskripsi

Knowledge discovery is defined as a process of the meaningful pattern extraction of implicit, unknown, and potentially useful information from data. Knowledge Discovery is very useful and important to find and analyze meaningful patterns in huge and complex database. It provides the capability to discover new and meaningful information by using existing data. It quickly exceeds the human capacity to analyze enormous data sets. Moreover the processing time and result validity to discover knowledge among large data should be deeply considered. The use of intelligent learning techniques in Knowledge Discovery can be useful to retrieve meaningful result in an automated process. The intelligent learning techniques for classification and clustering are required to deal with supervised and unsupervised data among amounts of data.

Capaian Pembelajaran

The course brings the students to understand how to discover meaningful knowledge from enormous sources, to learn the steps of the knowledge discovery process, and to familiarize them with concepts, techniques and tools used in the process. This course is designed to learn Knowledge Discovery from preprocessing stages for data preparation, data selection and transformation, algorithms for mining data, data interpretation, and applicability for several fields.

Materi Pembelajaran
  • Data Pre-processing
  • Classification with Decision Tree
  • Clustering and Cluster Analysis
  • Advanced clustering techniques (Automatic clustering, Incremental clustering, Shape-independent Clustering)
  • Information Retrieval (Text Mining, Image Retrieval, Video Retrieval)
  • Correlation measurement
  • Outlier analysis and anomaly detection
  • Multiband image clustering